If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+6r+7=0
a = 1; b = 6; c = +7;
Δ = b2-4ac
Δ = 62-4·1·7
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2}}{2*1}=\frac{-6-2\sqrt{2}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2}}{2*1}=\frac{-6+2\sqrt{2}}{2} $
| 6x-24=8x+20 | | c÷5=6 | | 3x=-15+2x | | Y=90z | | 0.4(3.2x+2)−x=2x+1.8 | | x+50=x+140 | | 64=x+12 | | 163=2x^2 | | 3(x+8)=-27 | | (7x-20)(4x+16)=180 | | 4=(6m-7) | | .75(x+42,000)=60,000 | | 6a–4=11+a | | 2x–15=3(x+6) | | (4x+16)(7x-20)=180 | | 18=(a-2.5) | | (2a-18.3)=(a-2.5) | | X.x+10=600 | | (a-2.5)=(a+2.7 | | (a-2.5)=(a+2.7)=(18.5)=(2a-18.3) | | 0p+5(1-p)=10p+0(1-p) | | 61/2=1/2(41/3)h | | 3y÷(2+6)=32 | | 174-y=280 | | 7n=39 | | 0q+5(1-q)=10q+0(1-q) | | t/14–11=–11 | | 45=9v-4v | | 4k-38=10(k+1) | | 27^(2x+3)=9^(5x)3 | | 48/r=2 | | 2(-4+2d)=11d+6 |